일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- wpf
- preprocessing
- length
- inheritance
- flutter
- Barcode
- Unity
- Overloading
- mfc
- Pointer
- atmega328
- compare
- aduino
- memory
- Read
- parameter
- public
- stream
- file access
- digitalRead
- UNO
- sensor
- Contour
- Class
- Binary
- Android
- Encapusulation
- APP
- SERIAL
- java
- Today
- Total
목록Feature (5)
폴크(FOLC)
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 매칭한다. > 이미지 정보에서 특징점을 매칭 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 매칭 > srcImage : 입력, keypoints : 특징점, k : 가장 가까운 세트 개수, crossCheck : 서로 확인 > maxDistance : 최대 거리 using OpenCvSharp.Features2D; # Feature Detector - SIFT, BRISK, ORB, MSER, FFD, AFD, SBD, KAZE, AKAZE... > Mat srcImage1 = new Mat(), srcImage2 = new Mat(); > KeyPoint[] kpts1, kpts2; > Mat des..
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 추출한다. > 이미지 정보에서 특징점을 추출 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 추출 > srcImage : 입력, keypoints : 특징점 using OpenCvSharp.Features2D; # SIFT - 특허 > var sift_detector = SIFT.Create(500); > List keypoints = sift_detector.Detect(srcImage).ToList(); # BRISK > var brisk_detector = BRISK.Create(500); > keypoints = brisk_detector.Detect(srcImage).ToList(); # ORB..
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 매칭한다. > 이미지 정보에서 특징점을 매칭 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 매칭 > srcImage : 입력, keypoints : 특징점, k : 가장 가까운 세트 개수, crossCheck : 서로 확인 > maxDistance : 최대 거리 # Feature Detector - SIFT, BRISK, ORB, MSER, FFD, AFD, SBD, KAZE, AKAZE... > cv::Mat srcImage1, srcImage2; > vector kpts1, kpts2; > cv::Mat desc1, desc2; > cv::Ptr orb_detector = cv::ORB::creat..
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 추출한다. > 이미지 정보에서 특징점을 추출 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 추출 > srcImage : 입력, keypoints : 특징점 # cv::SIFT - 특허 > vector keypoints; > cv::Ptr sift_detector = cv::SIFT::create(500); > sift_detector->detect(srcImage, keypoints); # cv::BRISK > cv::Ptr brisk_detector = cv::BRISK::create(500); > brisk_detector->detect(srcImage, keypoints); # cv::ORB > ..
# 인텔에서 실시간 컴퓨터 비전(이미지 프로세싱)을 목적으로 개발한 프로그래밍 라이브러리이다. # 인텔 CPU를 사용하게 되면 속도의 향상을 볼 수 있는 IPP를 지원한다. # 윈도우, 리눅스 등에서 사용하며 오픈소스 BSD 허가하에 무료 > TensorFlow, Torch / PyTorch 및 Caffe 등의 딥러닝 프레임워크를 지원 # OpenCV : Open Source Computer Vision, IPP : Intel Performance Primitives 관련 알고리즘 및 정보들은 무수히 많으며 심층 신경망 모듈 및 기계학습등의 내용도 포함되어 있다. 그 중에서 실시간 컴퓨터 비전에서 일반적으로 많이 사용되는 내용을 간략히 소개하면 다음과 같다. # 이미지 처리 # Image Filterin..