일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- UNO
- flutter
- Class
- Overloading
- Pointer
- atmega328
- memory
- inheritance
- Android
- stream
- Contour
- APP
- public
- file access
- mfc
- aduino
- preprocessing
- digitalRead
- Encapusulation
- SERIAL
- Barcode
- Binary
- Read
- wpf
- java
- length
- parameter
- compare
- sensor
- Unity
- Today
- Total
목록KNN (3)
폴크(FOLC)
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 매칭한다. > 이미지 정보에서 특징점을 매칭 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 매칭 > srcImage : 입력, keypoints : 특징점, k : 가장 가까운 세트 개수, crossCheck : 서로 확인 > maxDistance : 최대 거리 using OpenCvSharp.Features2D; # Feature Detector - SIFT, BRISK, ORB, MSER, FFD, AFD, SBD, KAZE, AKAZE... > Mat srcImage1 = new Mat(), srcImage2 = new Mat(); > KeyPoint[] kpts1, kpts2; > Mat des..
# 디지털 이미지 처리 # 이미지 상태 정보에서 배경을 제거하고 전경을 추출한다. > 이미지 정보에서 배경을 제거하고 전경 추출 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지 상태 정보에서 배경을 제거하고 전경을 추출 > srcImage : 입력, dstImage : 결과 # cv::createBackgroundSubtractorKNN > cv::Ptr pBackSubKNN = cv::createBackgroundSubtractorKNN(); > pBackSubKNN->apply(srcImage, dstImage); # cv::createBackgroundSubtractorMOG2 > cv::Ptr pBackSubMOG2 = cv::createBackgroundSubtractorMOG..
# 디지털 이미지 처리 # 이미지의 상태 정보에서 특징점을 매칭한다. > 이미지 정보에서 특징점을 매칭 # 이미지 처리 - OpenCV 4.5.3 으로 테스트 # 이미지의 상태 정보에서 특징점을 매칭 > srcImage : 입력, keypoints : 특징점, k : 가장 가까운 세트 개수, crossCheck : 서로 확인 > maxDistance : 최대 거리 # Feature Detector - SIFT, BRISK, ORB, MSER, FFD, AFD, SBD, KAZE, AKAZE... > cv::Mat srcImage1, srcImage2; > vector kpts1, kpts2; > cv::Mat desc1, desc2; > cv::Ptr orb_detector = cv::ORB::creat..